
Rotary Encoder with Arduino

How the Rotary Encoder Works

The rotary encoder used in this article is an incremental encoder which provides information

about its knob’s rotation. It is up to the controller to turn the measurements into useful values such

as distance and speed.

The knob is attached to a disc inside the encoder. There are also two contact points placed next to

the spinning disc. These are the A and B outputs of the encoder. When the disc spins, the points

remain stationary. This causes them to alternate between touching GND and VCC, producing square

waves.

Output A

Output A

Output B

Output B

90° out of phase

The placement of the contacts causes the waves to be 90 degrees out of phase. If the knob rotates

clockwise, the B pin will lead. If the knob rotates counter-clockwise, then the A pin will lead. This is

how we tell what direction the encoder is turning.

Some rotary encoders also have a switch under the knob that allows it to be pressed. This switch is

connected to an additional SW pin.

Pin Connections

A rotary encoder module usually has the following pins. Their connections to the Arduino in the

code are also provided in the table.

1

RE module pin Stands for Description Connects to Arduino

pin

CLK Clock Encoder output 1 Digital pin 4

DT Data Encoder output 2 Digital pin 3

SW Switch Switch connection Digital pin 2

+ (VCC) Power in Power connection 5V pin

- (GND) Ground Ground connection GND pin

Code

// Pin constants

#define A_PIN 4

#define B_PIN 3

#define BUTTON_PIN 2

int state, lastState, counter;

void setup() {

 Serial.begin(9600);

 pinMode(A_PIN, INPUT);

 pinMode(B_PIN, INPUT);

 pinMode(BUTTON_PIN, INPUT);

 // Read initial

 lastState = digitalRead(A_PIN);

}

void loop() {

 state = digitalRead(A_PIN); // Read output of output A

 if (state != lastState) {

 // State has changed, so a pulse has occurred

 // If the outputB state is different to the outputA state, that means the encoder

is rotating CW

 if (digitalRead(B_PIN) != state) {

 // Two output states are different, so encoder is rotating CW

 counter++; // Increment counter

 } else {

 counter--; // Rotating CCW, decrement counter

 }

 }

 int btn = digitalRead(BUTTON_PIN); // Read button

 lastState = state; // Update last state

 // Print values

 Serial.print("Counter: "); Serial.print(counter); // Print the counter

 Serial.print(" Button: "); Serial.println(btn); // Print button state

2

}

We start by defining the pins that the encoder is connected to, as well as open a serial port and

configure the pins as inputs. We also read the initial state of the encoder.

In the loop function, we start by reading the current state of the encoder. If there is a difference

between the old and current states, a pulse has occurred (the user rotated the knob.) We then check

if the B output is different from the A output. If it is, then the encoder is rotating clockwise and we

increment the counter. Otherwise, we decrement the counter.

Outside the if blocks, we also read the button pin and update the last reading. We then use

Serial.print and Serial.println to output the values to the serial monitor.

Testing

Upload the code to the Arduino and open the serial monitor. Test the code by rotating the encoder

and pressing the button. The displayed numbers should change accordingly to the rotation of the

knob. Be sure to not rotate it too fast, as the Arduino may not read the pulses fast enough.

Serial monitor output

Counter: 26 Button: 1

Counter: 26 Button: 1

Counter: 27 Button: 1

Counter: 28 Button: 1

Counter: 29 Button: 1

Counter: 30 Button: 0

Counter: 32 Button: 0

Counter: 29 Button: 0

Counter: 27 Button: 0

Counter: 25 Button: 1

3

4

	Rotary Encoder with Arduino
	How the Rotary Encoder Works
	Pin Connections
	Code
	Testing

