
ATmega 40 Board

Technical Details

This board is programmed using the Arduino IDE. This means that a lot of code written for an

Arduino can be ported to this board (be aware of the memory sizes of the microcontrollers,

compared in the table below).

This board is compatible with Atmel AVR microcontrollers in the DIP-40 package.

• ATmega16

• ATmega32

• ATmega164

• ATmega324

• ATmega644

• ATmega1284

• ATmega8535

Microcontroller Comparison

ATmega8

535

ATmega1

6

ATmega3

2

ATmega1

64

ATmega3

24

ATmega6

44

ATmega1

284

Arduino

Uno

(ATmega

328)

Operatin

g Voltage

5V 5V

Physical

Pins

40 28

I/O Lines 32 23

ADC

Ports

8 6

PWM

Channels

4 6 8 6

Flash

Memory

8k 16k 32k 16k 32k 64k 128k 32k

EEPROM 512 1k 512 1k 2k 4k 1k

SRAM 512 1k 2k 1k 2k 4k 16k 2k

Note that the ATmega328 is not compatible with the ATmega 40 Board - it has been displayed in this

table for comparison purposes only.

1

Board Details

Microcontroller ATmega16, 32, 164, 324, 644, 1284, 8535

Operating Voltage 5V

Input Voltage 7-20V (recommended), 6-35V (limit)

On-Board ICs 74HC595 (shift register), DS1307 (RTC)

Clock Frequency 16MHz (microcontroller), 32.768kHz (RTC)

"L" LED 13 (PWM-enabled on all microcontrollers)

Programming Interface Serial (requires 5V FTDI cable)

Length 125.22 mm (4.93 in)

Width 78.66 mm (3.10 in)

Board Pinout

▼ Click to reveal large image

PC0

PC1

PD5

PD4

PD3

PD2

PD1

PD0

RESET

PD1

PD0

RESET

PC5

PC6

PC7

27

28

29

9

15

14

5V

5V

PB7

PB6

PB5

PB4

PB3

PB2

PB1

PB0

PB7

PB6

5V

PB5

22

23

32

19

18

17

16

15

14

8

7

6

5

4

3

2

1

AREF

OC1A

OC1B

INT1

INT0

OC3B

OC3A

OC0B

OC0A

INT2

3

3

2

1

SCK

MISO

MOSI

SS

TXD1

RDX1

TXD0

RXD0

TXD0

RXD0

1

1

SCL

SDA

7

6

5

4

3

2

1

0

8

7

6

OC3B

OC3A

3

3

SCK

MISO

MOSI

7

6

5

9

8

GND

GND

GND

GND

GND

5V

GND

GND

16

17

13

12

11

10

9

8

PC0

PC1

5V

22

23

SCL

SDA

16

17

21

22

23

PB7

PB6

PB5

PB4

PB3

PB2

PB1

PB0

33

34

40

39

38

37

36

35

ADC7

ADC6

ADC0

ADC1

ADC2

ADC3

ADC4

ADC5

31/A7

30/A6

24/A0

25/A1

26/A2

27/A3

28/A4

29/A5

IOREF

RESET

3V3

5V

VIN

VIN

GND

GND

GND

GND

Not Connected

Q0

Q1

Q2

Q3

Q4

Q5

Q6

Q7

15

1

2

3

4

5

6

7

PD7 21 OC2A 1 15

5V

GNDPD6 20 OC2B 2 14

5V

BAT

7 SQW

DIP switch - Set to (ON, ON) to enable serial over
FTDI, set to (OFF, OFF) to disable.

16 MHz microcontroller crystal

D13 LED - PWM-enabled on all microcontrollers

Reset button

This is connected to the output of
the 3V coin cell. Use it to test the
voltage of the coin cell.

1
6

 / 3
2

 / 1
6

4
 / 3

2
4

 /
6

4
4

 / 1
2

8
4

 / 8
5

3
5

7
4

H
C

5
9

5
DS1307

Power
Ground
Port pin
Pin function
Physical pin
Analog pin
PWM - all ATmegas
PWM - 164, 324, 644, 1284
PWM - 1284
Serial pin
IDE
74HC595 pin
DS1307 pin

Connected pins

Female header
Right-angle male header
Male header

1

2

3

74HC595 connections:
 - Data: D18 (PC2)
 - Latch: D19 (PC3)
 - Clock: D20 (PC4)

DS1307 address: 0x68

TDX1 and RDX1 are on
164/324/644/1284 only.

OC3A and OC3B are on 1284 only.

VIN should be within
7-20 V DC.

ATmega 40 Board Pinout
Version 1.2 | 10/27/2024
www.aidansun.com/articles/atmega-40-board/

Schematic

▼ Click to reveal large image

2

PCB

Download Extended Gerber (.zip)

Bottom Top

Parts List

Resistors

Number Part Value Quantity

1 Resistor 10k 4

2 Resistor 220R 10

3

/dl/atmega-mcu-files.zip

Passives

Number Part Value Quantity

1 Electrolytic capacitor 10µF 4

2
Ceramic capacitor

20pF 2

3 100nF

1

4
Crystal oscillator

16MHz

5 32.768kHz

6
5mm LED

Green

7 Yellow

8 DIP Switch 2-Channel

9 Screw Terminal 2-Pin, 3.5mm spacing

10 Pushbutton Normally-Open

Headers

4

Number Pin Type # of Pins Quantity

1

Female

10 1

2 8 2

3 6

14

Double-row male

16

5 8

6
6

2

7
Right-angle male 1

8 3

9

Male

8
2

10 3

11 1 1

ICs

Number Part Quantity

1 Supported 40-pin MCU

1

2 74HC595

3 DS1307

4 40-pin DIP socket

5 16-pin DIP socket

6 8-pin DIP socket

7 LM1117 3.3V regulator

8 7805 5V regulator

5

Batteries

Number Part Quantity

1 CR2032 coin cell
1

2 CR2032 coin cell holder

3 9V battery
1 (optional)

4 9V battery clip

Soldering Process

In the images below, all newly soldered/added parts in the step are boxed in yellow.

Solder both right-angle male headers.

Solder all IC sockets. Pay attention to their

orientation (notches are circled in red).

6

Solder the DIP switch and coin cell holder. The

rectangular bit of the coin cell holder should be

pointing up (circled in red).

Solder all single-row male headers.

Solder all double-row male headers.

Solder the female headers and screw terminal.

7

The shift register’s 220R resistors are mounted

vertically to save space. Bend one of the leads so

that the leads are parallel. There are nine of

these resistors, one is also for the L LED.

Solder the shift register’s eight modified 220R

resistors.

Solder both crystal oscillators and reset button.

Solder the yellow L LED and its modified

resistor. The anode (longer leg) of the LED

should be in the square pad.

8

Solder the green power LED and its normal 220R

resistor. The anode (longer leg) of the LED

should be in the square pad.

Solder all electrolytic capacitors. The negative

leads of the capacitors should be in the square

pads (marked with a small minus sign on both

sides).

Solder all 10k resistors.

Solder the ceramic capacitors. Their values are

labeled in the image.

9

Solder the voltage regulators. The heatsink

should be over the three small rectangles on the

PCB.

Insert the ICs into their sockets and the coin cell

into its holder. Pay attention to the orientation of

the ICs, the notches are circled in red. The coin

cell’s + side should be facing up.


It is a good idea to mark the box corresponding to the microcontroller you are

using. The boxes are on the underside of the PCB, under the ATmega. For example,

if you are using an ATmega1284, mark the box next to the word "ATmega1284"

with a permanent marker.

Setting Up

Installing the Arduino Core

Some microcontroller boards (like the ATmega 40 Board) require the installation of an additional

software API to work with the Arduino IDE. This is called a core. The ATmega 40 Board uses

MightyCore to work with the Arduino environment.

1. Open the Arduino IDE, then go to File › Preferences.

2. In the text box marked "Additional Boards Manager URLs", enter this URL:

https://mcudude.github.io/MightyCore/package_MCUdude_MightyCore_index.json. This is the JSON

file that will be used to install the core.

3. Exit out of the preferences window by clicking OK, then go to Tools › Board › Boards Manager.

4. Search for "MightyCore" in the search box, then scroll down until you find it. Click Install to

install this core. (You may need to wait for the IDE to download the core’s files.)

5. Once the installation is complete, exit out of the boards manager and go to the board selection

menu under Tools › Board. You should see the seven microcontrollers under the MightyCore

option.

10

https://github.com/MCUdude/MightyCore
https://mcudude.github.io/MightyCore/package_MCUdude_MightyCore_index.json

Burning the Bootloader

The bootloader is a piece of code that sits inside the microcontroller. It runs when you turn on or

reset the board. Its main purpose is to receive code from the computer and write it to flash

memory. When you buy a new chip, it usually will be blank, with no bootloader. You will then have

to flash the bootloader yourself.

To burn the bootloader, you will need:

• 1x ATmega 40 Board

• 1x Arduino Uno

• 6x Male-female jumper wires

1. Connect the boards together. The table below represents the ATmega 40 Board’s ICSP header

with the board viewed from above, coin cell on the left. Pins listed are the Arduino pins to

which the corresponding ICSP pin is connected to.

D12 5V

D13 D11

D10 GND

2. In the Arduino IDE, go to the Tools menu and configure the following:

◦ Board: Arduino Uno

◦ Port: The COM port of your Arduino Uno (will vary)

◦ Programmer: Arduino as ISP

3. Go to File › Examples › 11.ArduinoISP › ArduinoISP and upload the sketch to your Arduino

Uno. This sketch will turn the Arduino into a AVRISP to flash the bootloader.

4. Once the sketch has been uploaded, select the correct microcontroller for your board under

Tools › Board. If the core has been installed successfully, the microcontrollers should appear

under "MightyCore".

5. Click [ Burn Bootloader ] under the Tools menu. This will flash the ATmega with the bootloader

you selected.

Getting Started

Required Materials

• 1x ATmega 40 Board

• 1x 5V FTDI cable

As the ATmega 40 Board contains no onboard USB-to-serial conversion chip, it relies on external

circuitry to communicate with your computer. This is provided through an FTDI cable.

11


FTDI cables can come with different voltage levels, such as 3.3V and 5V. Ensure

you are using a 5V-compatible cable.

Plug the cable’s pin end into the 6-pin FTDI header on the ATmega 40 Board. This is the header next

to the DIP switch. When you connect the cable, the black ground wire should be closest to the dot

on the PCB:

Before uploading programs to the board, make sure that the DIP switch is in the (ON, ON) position.

This will enable serial communication over FTDI. If one or both of the channels are in the OFF

position, the communication will be disabled and uploading will fail.

Connect the USB end of your cable into your computer. If the power LED does not light,

immediately disconnect the cable and check your soldering and connections.

If the power LED does light, you are ready to upload a sketch.

Uploading a Sketch


There should not be a need to install any drivers for the FTDI cable, as the drivers

were automatically installed with the Arduino IDE.

Make sure the correct microcontroller is selected in Tools › Board. You will not be able to upload a

sketch to the board without the correct microcontroller selection.

Upload the Blink sketch, shown below, to your board. The "L" LED should start blinking.

/*

 Blink.ino

12

 Sketch to blink the onboard D13 "L" LED.

 Created on 15 May 2020 by Aidan Sun

*/

void setup() {

 pinMode(13, OUTPUT);

}

void loop() {

 digitalWrite(13, HIGH); // Turn LED on

 delay(1000); // Wait one second

 digitalWrite(13, LOW); // Turn LED off

 delay(1000); // Wait one second

}

PWM on D13 LED

Digital pin 13 is PWM-capable on all microcontrollers. This means that analogWrite can be used to

change the brightness of the LED. Upload the sketch below, and the LED should be increasing and

decreasing in brightness:

/*

 Fade.ino

 Sketch to fade the onboard D13 "L" LED.

 The "L" LED is connected to D13, which is a PWM pin on all microcontrollers.

 This means that we can change its brightness with PWM.

 Created on 15 May 2020 by Aidan Sun

*/

void setup() {

 pinMode(13, OUTPUT);

}

void loop() {

 for (int i = 0; i < 256; i++) {

 // Step brightness up from 0 to 255

 analogWrite(13, i);

 delay(4);

 }

 for (int i = 255; i > -1; i--) {

 // Step brightness down from 255 to 0

 analogWrite(13, i);

 delay(4);

 }

 // Delay at end of loop to prevent LED from flashing too quickly

13

 delay(100);

}

Shift Register

The ATmega 40 Board has an on-board 74HC595 shift register. The connections to the

microcontroller are below:

• Data connects to D18

• Latch connects to D19

• Clock connects to D20

An example of using a shift register with the Arduino is available here. You can modify the digital

pins used in the example to match those listed above.


The ATmega 40 Board contains built-in resistors for the shift register. Therefore,

external resistors don’t need to be used when connecting LEDs to the shift register

outputs.

Servos

To test a servo, you will need these parts:

• 1x ATmega 40 Board

• 1x 9g standard servo

The ATmega 40 Board has two digital pins next to power pins: D14 and D15. This means that you

can directly plug a servo into these pins. In this example, we will be using D15.


The standard Servo library will not work with ATmega 40 microcontrollers since

they handle timers differently than the microcontrollers used in typical Arduino

boards.

Fortunately, MightyCore includes an adapted version of the Servo library which does work with

these microcontrollers and is accessible with #include <Servo.h>. This means that from the code,

there will be no difference from controlling a servo using the built-in Servo library.

When you upload and run the code below, the servo should start moving back and forth:

/*

 Sweep.ino

 Sketch to control a servo.

 Created on 18 May 2020 by Aidan Sun

 Circuit: One standard 9g servo connected to D15 of the ATmega 40 Board

*/

14

74hc595-arduino.pdf

#include <Servo.h> // Include the servo library for ATmega 40

Servo s; // Create a servo object

void setup() {

 s.attach(15); // Servo is connected to D15

}

void loop() {

 for (int i = 0; i < 181; i++) {

 // Increment angle from 0 to 180

 s.write(i);

 delay(10);

 }

 for (int i = 180; i > -1; i--) {

 // Decrement angle from 180 to 0

 s.write(i);

 delay(10);

 }

}

On-board RTC


The RTC cannot be used with the ATmega8535. This is due to the small memory

size of the microcontroller.

The ATmega 40 Board contains an on-board DS1307 RTC. This RTC uses I2C to communicate. Using

the on-board RTC will be exactly the same as using an external one with Arduino.

I have written a separate tutorial on using a DS1307 with Arduino. View it here.


The RTC requires my DS130X library. Download the library in Zip format | DS130X

Documentation

Once you have read the tutorial and installed this library, go to File › Examples › DS130X › DS1307

› DateAndTime › PrintDateTime.

After uploading and running the code, open the serial monitor. There should be a steady stream of

timestamps read from the RTC:

Fri, 28/08/20 10:05:50

Fri, 28/08/20 10:05:51

Fri, 28/08/20 10:05:52

Fri, 28/08/20 10:05:53

Fri, 28/08/20 10:05:54

Fri, 28/08/20 10:05:55

15

ds1307-arduino.pdf
/dl/DS130X.zip
ds130x-reference.pdf
ds130x-reference.pdf

Fri, 28/08/20 10:05:56

Fri, 28/08/20 10:05:57

Fri, 28/08/20 10:05:58

Fri, 28/08/20 10:05:59

Reading Coin Cell Voltage

The ATmega 40 Board has a 2×3 header containing only power pins. This header is located to the

left of the coin cell.

The top row (labeled BAT) is connected to the coin cell’s output. This means that you can use the

pins to read the voltage of the coin cell without having to take it out.


Both pins in the BAT row are connected. This means that you can use either pin to

read the coin cell.

To read the coin cell with the ATmega 40 Board, connect one of the BAT pins to analog input A0. The

code below reads the analog value on A0, then converts it into a voltage to determine the state of

the coin cell.

/*

 TestCoinCell.ino

 Sketch to print the voltage of the coin cell to the serial monitor.

 Baud rate: 9600 baud

 Circuit: Connect one of the "BAT" pins to A0.

 Created on 15 May 2020 by Aidan Sun

*/

void setup() {

 Serial.begin(9600); // Open a serial port

 Serial.print("Coin Cell Test - ");

 // Get A0 readings

 int analogIn = analogRead(A0);

 // Get voltage from analog reading

 // The maximum voltage that can be read is 5V and the number of possible values

returned

 // by analogRead() is 1024.

 // Divide 5 by 1024 to get a scale factor of 0.0048. Multiply this scale factor by

the

 // analog reading to get voltage.

 float voltage = analogIn * 0.0048;

 // Print the voltage to one decimal

 Serial.print(voltage, 1);

 Serial.print("V "); // Print the unit (volts)

16

 if (voltage >= 2.0) {

 // If the battery is 2.0V or above, it is OK.

 Serial.println("Battery OK");

 }

 else {

 // If the battery is less than 2.0V, it needs to be replaced.

 Serial.println("Replace battery.");

 }

}

void loop() {} // No loop

After uploading and running the sketch, open the serial monitor. It will display the voltage read

from the coin cell. If the coin cell has a voltage above 2V, it will print 'OK'. Otherwise, it will tell you

to replace it. This is a sample output:

Coin Cell Test - 3.2V Battery OK

Issues with Arduino Compatibility

Below are some limitations of the compatibility of the ATmega 40 Board with the Arduino

environment, including software and hardware issues.

Software Issues

• No support for Pin Change Interrupts (PCINTs). This means that libraries that use PCINTs are

not compatible on these microcontrollers (example. SoftwareSerial).

• The standard Servo library will not work with these microcontrollers. (Note that this problem is

solved through MightyCore, which provides an adapted library with the same #include

<Servo.h>.)

• When porting code from a different board, the memory size of the microcontroller may be

different. If the ATmega 40 microcontroller has less memory than the original board, porting

and uploading may fail. See the Technical Details above for a comparison of memory sizes for

these microcontrollers.

Hardware Issues

• The I2C pins on ATmega 40 microcontrollers are different than on the standard Arduino Uno.

This means that any shields that use I2C are not compatible on the ATmega 40 Board.

• The SPI pins on ATmega 40 microcontrollers are different than on the standard Arduino Uno.

This means that any shields that use SPI must communicate via the ICSP header, which is

standard across all Arduino boards.

An easy way to tell if a shield uses ICSP is by looking at its underside - if it has a black 2×3 header on

17

the back and it plugs into the ICSP header, the shield uses ICSP and is compatible.

Serial Communication Issue

On ATmega 40 microcontrollers, TX and RX are now on digital pins 9 and 8, respectively. This

means that using these pins for general I/O use could disrupt serial communications, but on a

standard Arduino, this will pose no issue.

The workaround for this issue is the DIP switch on the board: when set to (ON, ON), digital pins 8

and 9 will have a connection to the FTDI header. This allows serial communication to occur, but

these pins cannot be used for general I/O.

When set to (OFF, OFF), the pins will no longer be connected to the FTDI header. This will

essentially turn the FTDI cable into a 'power-only' type cable - the device receives power, but the

data lines for communication are not connected. This will free up pins 8 and 9 so you can use them

for I/O.


If the DIP switch is in the (OFF, OFF) position, uploading sketches and serial

communication will fail.

18

19

	ATmega 40 Board
	Technical Details
	Microcontroller Comparison
	Board Details
	Board Pinout
	Schematic
	PCB

	Parts List
	Resistors
	Passives
	Headers
	ICs
	Batteries

	Soldering Process
	Setting Up
	Installing the Arduino Core
	Burning the Bootloader

	Getting Started
	Required Materials
	Uploading a Sketch
	PWM on D13 LED
	Shift Register
	Servos
	On-board RTC
	Reading Coin Cell Voltage

	Issues with Arduino Compatibility
	Software Issues
	Hardware Issues
	Serial Communication Issue

