
ADS1115 with Raspberry Pi

The ADS1115

The ADS1115 is an ADC (Analog-to-Digital Converter). ADCs convert analog signals (like sine waves)

into digital signals through communication protocol like SPI or I2C. They are used to give analog

inputs to a device incapable of measuring analog signals by itself, such as Raspberry Pis.

Below are some specifications for the ADS1115:

• Operating voltage: 2.0 V-5.5 V

• Current consumption: 150 µA in continuous mode

• Communication protocol: I2C

• Programmable data rate: 8-860 SPS (Samples Per Second)

• Precision: 16 bits

• Number of channels (analog inputs): 4

• Programmable comparator

• Internal oscillator

• Internal low-drift reference voltage

• Four single-ended or two differential inputs

• Programmable gain

ADS1115 Pinout

Pin Description

VDD ADC power in connection

1

Pin Description

GND ADC ground connection

SCL I2C pin (serial clock)

SDA I2C pin (serial data)

ADDR Address selection pin

ALRT Alert/Ready signal connection

A0 Analog input 0

A1 Analog input 1

A2 Analog input 2

A3 Analog input 3

ADS1115 Addressing

There are four addresses available. They are set by connecting the ADDR pin to either VDD, GND,

SDA, or SCL.

Connect ADDR to Address

GND 0x48 (0b1001000)

VDD 0x49 (0b1001001)

SDA 0x4A (0b1001010)

SCL 0x4B (0b1001011)

 The default address, when ADDR is not connected, is 0x48.

ADS1115 Resolution

The output of the ADS1115 is a signed integer (positive or negative). This means that although the

precision of the ADC is 16 bits, only 15 bits are used for the value of voltage measurements. One of

the bits determines the sign of the value. So, there are 32,768 possible output values (0 to 32,767, or

 to binary).

ADS1115 Full Scale and Value of a Bit

The value of a bit is determined by the Programmable Gain Amplifier (PGA) setting. This setting

establishes the full scale. In the default mode, the setting is ±6.144 V where 32,767 represents an

input value of 6.144 V. Dividing 6.144 V by 32,767 yields a scale factor of 0.1875 mV per bit. You can

also change the PGA setting to have a smaller full scale of ±2.048 V. That provides a more precise

resolution of 0.0635 mV per bit.

 The maximum analog input voltage cannot exceed the voltage at VDD + 0.3 V. For

2

example, if VDD is 3.3 V, the analog inputs cannot exceed 3.6 V. If the input does

exceed 3.6 V, the chip on the ADS1115 could be damaged.

Schematic


It is a good idea to tie any unused inputs to ground to avoid "floating" inputs,

where an input pin gives erratic readings, due to the fact that it is not connected to

anything.

Enabling I2C

Since the ADS1115 communicates over I2C, your Raspberry Pi needs I2C to be enabled. Follow the

steps below if you haven’t already enabled I2C:

1. Go to the Raspberry Pi configuration tool with sudo raspi-config.

2. Use the arrow and Enter keys to go to [ Interfacing Options ].

3. Go to [ I2C ].

3

4. When the "Would you like the ARM I2C interface to be enabled?" message appears, select [ Yes ].

Python Library

Below is a simple Python 3 library to use the ADS1115. Save it on your Raspberry Pi as ads1115.py:

ads1115.py

Python script to interface with ADS1115 ADC with Raspberry Pi.

Created on 24 April 2020 by Aidan Sun

import smbus

import time

Get I2C bus

bus = smbus.SMBus(1)

I2C address of the device

ADS1115_DEFAULT_ADDRESS = 0x48

ADS1115 Register Map

ADS1115_REG_POINTER_CONVERT = 0x00

ADS1115_REG_POINTER_CONFIG = 0x01

ADS1115_REG_POINTER_LOWTHRESH = 0x02

ADS1115_REG_POINTER_HITHRESH = 0x03

ADS1115 Configuration Register

ADS1115_CONFIG_SINGLE = 0x8000

ADS1115_REG_CONFIG_MODE_CONTIN = 0x00

ADS1115_CONFIG_COMP_WINDOW = 0x10

ADS1115_CONFIG_COMP_ACTVHI = 0x08

ADS1115_CONFIG_COMP_LATCH = 0x04

ADS1115_REG_CONFIG_CQUE_NONE = 0x03

GAIN_2_3 = 0

GAIN_1 = 1

GAIN_2 = 2

GAIN_4 = 3

GAIN_8 = 4

GAIN_16 = 5

SPS_8 = 0

SPS_16 = 1

SPS_32 = 2

SPS_64 = 3

SPS_128 = 4

SPS_250 = 5

SPS_475 = 6

SPS_860 = 7

4

DIFF_0_1 = 0

DIFF_0_3 = 1

DIFF_1_3 = 2

DIFF_2_3 = 3

class ADS1115:

 """Class for interfacing with ADS1115"""

 def __init__(self, device_address=ADS1115_DEFAULT_ADDRESS, gain=GAIN_1, sps

=SPS_128):

 # Set up address, gain, and SPS values

 gain_vals = [0x00, 0x02, 0x04, 0x06, 0x08, 0x0A]

 sps_vals = [0x00, 0x20, 0x40, 0x60, 0x80, 0xA0, 0xC0, 0xE0]

 self._addr = device_address

 self._gain = gain_vals[gain]

 self._sps = sps_vals[sps]

 def read_adc(self, ch):

 """Reads a channel from the ADC. The ch parameter must be between 0 and 3.

 Returns the value as a 16-bit integer.

 """

 # Check if ch is valid

 if not(0 <= ch <= 3):

 raise ValueError("Channel must be between 0 and 3")

 channels = [0x40, 0x50, 0x60, 0x70]

 config = [ADS1115_CONFIG_SINGLE | channels[ch] | self._gain |

ADS1115_REG_CONFIG_MODE_CONTIN, self._sps | ADS1115_REG_CONFIG_CQUE_NONE]

 bus.write_i2c_block_data(self._addr, ADS1115_REG_POINTER_CONFIG, config)

 time.sleep(0.02)

 data = bus.read_i2c_block_data(self._addr, ADS1115_REG_POINTER_CONVERT, 2)

 # Convert the data

 adc_data = (data[0] * 256) + data[1]

 return adc_data if adc_data <= 32767 else adc_data - 65535

 def read_adc_differential(self, ch):

 """Reads the difference between two ADC channels.

 Returns the value as a 16-bit integer.

 """

 # Check if ch is valid

 if not(0 <= ch <= 3):

 raise ValueError("Channel must be between 0 and 3")

 channels = [0x00, 0x10, 0x20, 0x30]

 config = [ADS1115_CONFIG_SINGLE | channels[ch] | self._gain |

ADS1115_REG_CONFIG_MODE_CONTIN, self._sps | ADS1115_REG_CONFIG_CQUE_NONE]

 bus.write_i2c_block_data(self._addr, ADS1115_REG_POINTER_CONFIG, config)

 time.sleep(0.02)

5

 data = bus.read_i2c_block_data(self._addr, ADS1115_REG_POINTER_CONVERT, 2)

 # Convert the data

 adc_data = (data[0] * 256) + data[1]

 return adc_data if adc_data <= 32767 else adc_data - 65535

 def read_adc_comparator(self, ch, low_thresh, high_thresh, active_low=True,

traditional=True, latching=False, num_readings=1):

 """Read an ADC channel with comparator enabled"""

 # Check if num_readings is valid

 if num_readings not in [1, 2, 4]:

 raise ValueError("num_readings must be 1, 2, or 4")

 comp_que = [None, 0, 1, None, 2]

 bus.write_i2c_block_data(self._addr, 0x02, [low_thresh >> 8, low_thresh &

0xFF])

 bus.write_i2c_block_data(self._addr, 0x03, [high_thresh >> 8, high_thresh &

0xFF])

 config = ADS1115_CONFIG_SINGLE | ((ch + 0x04) << 12) | self._gain | 0x0100 |

self._sps

 if not traditional:

 config |= ADS1115_CONFIG_COMP_WINDOW

 if not active_low:

 config |= ADS1115_CONFIG_COMP_ACTVHI

 if latching:

 config |= ADS1115_CONFIG_COMP_LATCH

 config |= comp_que[num_readings]

 bus.write_i2c_block_data(self._addr, ADS1115_REG_POINTER_CONFIG, [config >> 8,

config & 0xFF])

 time.sleep(0.02)

 data = bus.read_i2c_block_data(self._addr, ADS1115_REG_POINTER_CONVERT, 2)

 # Convert the data

 adc_data = (data[0] * 256) + data[1]

 return adc_data if adc_data <= 32767 else adc_data - 65535


To learn more about the specific I2C values and how they should be sent to the

ADS1115, go to its datasheet.

Reading Channels

The code below reads each analog input and prints their values:

6

from ads1115 import *

a = ADS1115()

while True:

 # Loop infinitely

 try:

 # Print readings into rows

 print(a.read_adc(0), end="\t")

 print(a.read_adc(1), end="\t")

 print(a.read_adc(2), end="\t")

 print(a.read_adc(3), end="\n")

 except KeyboardInterrupt:

 # Exit loop

 print("\nProgram Stopped")

 break

Output

18 18 18 18

18 18 18 18

18 18 18 18

18 18 18 18

18 18 17 17

18 18 19 17

18 18 18 17

18 18 18 18

18 18 18 18

18 18 18 18

18 18 18 18

18 18 18 18

103 18 18 18

1743 18 18 18

5187 18 18 18

7611 18 18 18

10342 18 18 17

5404 18 18 18

13097 18 18 19

20431 18 19 19

20430 18 19 19

20427 18 19 18

20431 18 18 17

20887 18 18 18

Program Stopped

There should be an output with four columns, A0 reading on the left to A3 reading on the right.

Rotate the trimpot connected to A0 to make the first value change.

7

Explanation

After importing the library, we create an ADS1115 instance. The ADS1115 constructor also accepts

the following keyword arguments:

• device_address: ADC address (default is 0x48)

• gain: Gain value, possible values:

◦ GAIN_2_3, gain of ± 6.144 V

◦ GAIN_1 - gain of ± 4.096 V (default)

◦ GAIN_2 - gain of ± 2.048 V

◦ GAIN_4 - gain of ± 1.024 V

◦ GAIN_8 - gain of ± 0.512 V

◦ GAIN_16 - gain of ± 0.256 V

• sps: Data rate in samples per second (SPS), possible values:

◦ SPS_8 - 8 SPS

◦ SPS_16 - 16 SPS

◦ SPS_32 - 32 SPS

◦ SPS_64 - 64 SPS

◦ SPS_128 - 128 SPS (default)

◦ SPS_250 - 250 SPS

◦ SPS_475 - 475 SPS

◦ SPS_860 - 860 SPS

For example, to initialize the ADS1115 with address 0x49, gain of ± 2.048 V, and data rate of 250 SPS,

you would use:

a = ADS1115(device_address=0x49, gain=GAIN_2, sps=SPS_250)

In the infinite loop, we read from each of the four channels with read_adc. This method reads from

a single ADC channel and takes the following parameter:

1. ch: The channel to read from (0 reads from A0, 1 reads from A1, etc.)

If a KeyboardInterrupt is caught, the program prints a message and exits.

Reading Differential Inputs

The following code reads the differential input between A0 and A1:

from ads1115 import *

8

a = ADS1115()

while True:

 try:

 print(a.read_adc_differential(DIFF_0_1))

 except KeyboardInterrupt:

 print("\nProgram Stopped")

 break

Output

2725

2749

2631

2534

2381

2137

1451

1437

1301

1033

772

47

52

88

42

40

32

13

12

12

Program Stopped

The output should have one column. Rotate both trimpots to see how the value changes.

Explanation

This ADS1115 library supports reading differential inputs with read_adc_differential. This method

reads from two ADC channels and returns the difference. It accepts one parameter:

1. ch: Which two channels to read

Possible values:

• DIFF_0_1 returns channel 0 minus channel 1

• DIFF_0_3 returns channel 0 minus channel 3

• DIFF_1_3 returns channel 1 minus channel 3

9

• DIFF_2_3 returns channel 2 minus channel 3

In the example code, we use DIFF_0_1, which makes the method return A0 reading minus A1

reading. The loop and exception handling parts are the same as the first example.

Using the Comparator

About the ADS1115 Comparator

The ADS1115 has a built-in comparator. This comparator has two modes: traditional and window.

• In traditional mode, the ADS1115 activates the ALRT pin if the input of a channel goes above a

specified high threshold. The ALRT pin gets deactivated when the reading drops below a

specified low threshold.

• In window mode, the ALRT pin activates when the reading is outside the range of the two

thresholds. The ALRT pin gets deactivated when the reading is in the range of the two

thresholds.

Code

from ads1115 import *

a = ADS1115()

while True:

 try:

 print(a.read_adc_comparator(0, 2000, 10000)) # Traditional mode

 # print(a.read_adc_comparator(0, 2000, 10000, traditional=False)) # Window

mode

 # print(a.read_adc_comparator(0, 2000, 10000, active_low=False)) #

Traditional mode with active high

 except KeyboardInterrupt:

 print("\nProgram Stopped")

 break

Explanation

To read the ADS1115 comparator, use read_adc_comparator. This method accepts the following

parameters:

1. ch: Channel to read from

2. low_thresh: Low threshold

3. high_thresh: High threshold

4. active_low: State of the ALRT pin: active low if True, active high if False (optional, default is

True)

10

5. traditional: Mode of the comparator: traditional if True, window if False (optional, default is

True)

6. latching: If the comparator is latching: latching if True, not latching if False (optional, default is

False)

7. num_readings: Number of readings the ADC reads before changing the state of the ALRT pin

(optional, default is 1)

In the example code, low_thresh is set to 2000 and high_thresh is set to 10000. All optional

parameters are left alone.

This example code by default uses the comparator in traditional mode. Play the video below to see

how the LED should change in traditional mode.

 https://www.aidansun.com/videos/ads1115-rpi/comparator-traditional.mp4 (video)

To use window mode, uncomment line 8 and comment line 7. Run the code again, and you should

see the LED turn on when it is inside the 2000-10000 range:

 https://www.aidansun.com/videos/ads1115-rpi/comparator-window.mp4 (video)

To set the ALRT pin to active high, uncomment the third read_adc_comparator line (line 9) and

comment the other two.

Active high can be used with both comparator modes. Combine traditional=False with

active_low=False to have the pin active high in window mode.

If you run the code again, you should see that the LED’s state is inverted:

 https://www.aidansun.com/videos/ads1115-rpi/comparator-active-high.mp4 (video)

11

https://www.aidansun.com/videos/ads1115-rpi/comparator-traditional.mp4
https://www.aidansun.com/videos/ads1115-rpi/comparator-window.mp4
https://www.aidansun.com/videos/ads1115-rpi/comparator-active-high.mp4

	ADS1115 with Raspberry Pi
	The ADS1115
	ADS1115 Pinout
	ADS1115 Addressing
	ADS1115 Resolution
	ADS1115 Full Scale and Value of a Bit
	Schematic
	Enabling I2C
	Python Library
	Reading Channels
	Explanation

	Reading Differential Inputs
	Explanation

	Using the Comparator
	About the ADS1115 Comparator
	Code
	Explanation

